38,231 research outputs found

    Combining Undersampled Dithered Images

    Get PDF
    Undersampled images, such as those produced by the HST WFPC-2, misrepresent fine-scale structure intrinsic to the astronomical sources being imaged. Analyzing such images is difficult on scales close to their resolution limits and may produce erroneous results. A set of ``dithered'' images of an astronomical source generally contains more information about its structure than any single undersampled image, however, and may permit reconstruction of a ``superimage'' with Nyquist sampling. I present a tutorial on a method of image reconstruction that builds a superimage from a complex linear combination of the Fourier transforms of a set of undersampled dithered images. This method works by algebraically eliminating the high order satellites in the periodic transforms of the aliased images. The reconstructed image is an exact representation of the data-set with no loss of resolution at the Nyquist scale. The algorithm is directly derived from the theoretical properties of aliased images and involves no arbitrary parameters, requiring only that the dithers are purely translational and constant in pixel-space over the domain of the object of interest. I show examples of its application to WFC and PC images. I argue for its use when the best recovery of point sources or morphological information at the HST diffraction limit is of interest.Comment: 22 pages, 9 EPS figures, submitted to PAS

    Atmospheric Chemistry for Astrophysicists: A Self-consistent Formalism and Analytical Solutions for Arbitrary C/O

    Get PDF
    We present a self-consistent formalism for computing and understanding the atmospheric chemistry of exoplanets from the viewpoint of an astrophysicist. Starting from the first law of thermodynamics, we demonstrate that the van't Hoff equation (which describes the equilibrium constant), Arrhenius equation (which describes the rate coefficients) and procedures associated with the Gibbs free energy (minimisation, rescaling) have a common physical and mathematical origin. We address an ambiguity associated with the equilibrium constant, which is used to relate the forward and reverse rate coefficients, and restate its two definitions. By necessity, one of the equilibrium constants must be dimensionless and equate to an exponential function involving the Gibbs free energy, while the other is a ratio of rate coefficients and must therefore possess physical units. We demonstrate that the Arrhenius equation takes on a functional form that is more general than previously stated without recourse to tagging on ad hoc functional forms. Finally, we derive analytical models of chemical systems, in equilibrium, with carbon, hydrogen and oxygen. We include acetylene and are able to reproduce several key trends, versus temperature and carbon-to-oxygen ratio, published in the literature. The rich variety of behavior that mixing ratios exhibit as a function of the carbon-to-oxygen ratio is merely the outcome of stoichiometric book-keeping and not the direct consequence of temperature or pressure variations.Comment: Accepted by ApJ. 9 pages, 4 figure

    The influence of conducting flaps on the reflection coefficient of a parallel-plate waveguide illuminating a conducting sheet

    Get PDF
    Conducting flap effects on reflection coefficient of parallel-plate waveguide illuminating conducting shee

    Aperture reflection coefficient of a parallel- plate waveguide by wedge diffraction analysis

    Get PDF
    Aperture reflection coefficient of parallel plate waveguide by wedge diffraction analysi

    Renormalization-group approach to superconductivity: from weak to strong electron-phonon coupling

    Full text link
    We present the numerical solution of the renormalization group (RG) equations derived in Ref. [1], for the problem of superconductivity in the presence of both electron-electron and electron-phonon coupling at zero temperature. We study the instability of a Fermi liquid to a superconductor and the RG flow of the couplings in presence of retardation effects and the crossover from weak to strong coupling. We show that our numerical results provide an ansatz for the analytic solution of the problem in the asymptotic limits of weak and strong coupling.Comment: 8 pages, 3 figures, conference proceedings for the Electron Correlations and Materials Properties, in Kos, Greece, July 5-9, 200

    Reply to Comment by D. Spemann et al [EPL 98 (2012) 57006, arXiv:1204.2992]

    Full text link
    This article is a reply to the Comment by D. Spemann et al (arXiv:1204.2992) in response to our paper 'Revealing common artifacts due to ferromagnetic inclusions in highly oriented pyrolytic graphite' (EPL, 97 (2012) 47001).Comment: Reply to arXiv:1204.2992 Comment by D. Spemann et al re arXiv:1201.6374 by Sepioni et a
    corecore